JOURNAL OF APPROXIMATION THEORY 12, 61-6% (1974}

Uniform Piecewise Polynomial Approximation
with Variable Joints*

T. PavLIDIS AND A. P. Maika

Department of Electrical Engineering, Princeton University,
Princeton, New Jersey 08540

Communicated by John R. Rice

A procedure based on functional iteration is proposed for solving the problem of
uniform piecewise polynomial approximation of a function, and a proof for its
convergence is given. This method compares favorably with Lawson’s algorithm,
especially in cases in which the given function is not of smooth form.

1. INTRODUCTION

The problems of splines with variable knots and piecewise polynomial
approximation with variable joints have received considerable attention in
the literature [1-11]. The problem of optimization when the knots or joints
are variable is a nonlinear one and no general solution to it is known. Never-
theless, the problem is of considerable practical importance since, to quote
Rice, “the key to the successful use of splines is to have the location of the
knots as variables” [1, Vol. 2, p. 123]. The same statement could be made
about piecewise polynomial approximations. This paper presents a solution
to the problem of finding the optimum piecewise approximating polynomial.
It is based on functional iteration and it reduces the problem to that of
finding the zero of a vector valued function.

Removing the continuity conditions at the break points not only simplifies
the problem but it is also desirable for the following reasons: In many
applications, and in particular feature selection for pattern recognition and
picture processing, continuity conditions are not very meaningful since one
is often faced with large changes in both amplitude and derivative of the
input function. Furthermore, speed of computation can be very important in
the same applications, and finding the approximation separately on each
interval reduces significantly the computational complexity of the problem
besides making it easily amenable to parallel computation.
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Let f(x) be a given function defined on an interval [«, 8] and let {x,}7_, be
dividing points such that:

X=Xy < Xy < v < X, = B (1)

Then on the mth segment (x,,_, , X,], f(x) is approximated by a polynomial
Pn(x). The approximation is called optimal if the coefficients of p,.(x)
(m =1, 2,..., n) and the points x,(m = 1, 2,..., n — 1) are chosen in such a
way as to minimize

e = maxe,, 2

where e,, is the error norm on (x,,_; , X,,]- We restrict ourselves to the case of
uniform approximation, i.e., when

em = max | f(x) — pu(x)|. €)

Such a choice of a norm combined with the use of variable joints preserves
local features. For example, consider the case in which

f(x) = cos kx for x € [0, 0.5), (0.5 - ¢, 1]
and
F(x) =2 4+ cos kx for x €[0.5, 0.5 + €].

For a sufficiently high value of k in comparison to ¢ an approximation of
f(x) by a piecewise constant function with 3 break points will “miss” the
pulse if an integral square error norm is used. This will not happen with
uniform approximation.

In certain applications the optimization should be carried with respect to
n, by finding its minimum value for a given error tolerance e. However, this
problem requires the solution of the former and in the sequence we will
assume that » is given.

2. PROPERTIES OF e,

We assume that f(x) is continuous and that it satisfies a Lipschitz condition
on [«, B]. Some of the properties listed below hold even if these assumptions
are relaxed.

It can be shown [8, 10} that:

(1) e, is a continuous function of x,,_, and x,, .
(2) e, is nonincreasing in X,,_; .
(3) e, is nondecreasing in x,, .
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We have:

TueoreM 1. e, satisfies a Lipschitz condition with respect to both x,,_,
and x,, .

Proof. Consider an approximation over [x; , x] and express the minimurmn
error norm as a function of the right endpoint:

d(x) = mpin Hf“ p ”[ms,m] -
Let p* be the optimizing polynomial on [x,, x;}. Then for x, > x;

d(x,) — d(x;) = min || £ — p g1 — 11/ — P agayd
or
d(‘fz) - d(x]) < Hf'_ p* H[w“,w.z] - Hf’— p* H[aro,:r:ﬂ -

The right-hand side is obviously not greater than M{x, — x;) for some M and
therefore,
d(xs) — d(x;) < M(x, — xy).

A similar argument can be made for the left endpoint. Let de,, denocte the
change in the error norm of the optimal uniform approximation when an
endpoint is moved. Let dx,, denote a change in the location of x,, . Then
Theorem 1 together with properties (2) and (3) imply:

de,,

—M < < 0  (nonincreasing} (4a)
Ax,
de,, ‘ |
O <M (nondecreasing) (4b)

The above inqualities are critical in the subsequent development. As a matter
of fact, most of the results are valid not only on uniform piecewise poly-
nomial approximation but any other type as long as the dependence of the
error norm on the endpoints conforms with Eq. (4) and the goal is to mini-
mize the error norm on each interval.

3. BALANCED ERROR SOLUTION

It can be easily shown [8, 10] that if
€1 =€y 7= T =€y,

then the solution is optimal, and that an optimal solution with this property
always exists. Such a solution is called a balanced error solution.

b4c/12/1-8
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Lawson [10] has proposed an iterative algorithm for finding such a solu-
tion; let the superscript & indicate the iteration. Then in the case of piecewise
g order polynomial approximation, assume that the error is related to length
of the interval by an equation of the form:

emk = cmk(smk)q+1
here .
v smk = xmk - xy;n—l . (5)
At each step the variables s,,* and e, * are known, thus Eq. (5) can be solved
with respect to ¢,,k. A balanced error solution could be achieved if ¢,,* was
indeed a constant and the lengths were chosen according to the following
relations:

¢, F(sEH? = E, m=1,.,n, (6)

where E is a constant obtained from the length invariance of the sum of
intervals [10]

— a+1
_/g_f“_ ] )
2

/ o
m g+l A4 cmk

E=

Because Eq. (5) is only an approximation, it is necessary to proceed through
successive iterations.

The disadvantage of this method is that if the error e,,* on some interval is
zero (or even much smaller than on all the others) then Eq. (5) gives ¢,* =0
(or close to zero) and then Eq. (6) either cannot be solved or 55 tends to
B — a. This is a rather serious defect since it is not unlikely that a function
has an almost linear section. Practical experience with various types of data
has shown that such failures can be quite common [12, 13]. Although the
method could be modified to avoid the “catastrophes’ when e,* = 0, it may
still not converge.

4. A FuncTiONAL ITERATION METHOD

The following is a scheme based on functional iteration of the form [14]:

x¥t1 = h(x*). 8)
Spectfically, for k =0, 1, 2,....
xptt = x 4 c(ek , —e,F) m=l,.,(n—1), (9a)

R (9b)
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Where x,° (m = 1,..., n) is an arbitrary initial segmentation and ¢ is a
positive number, it will be shown that a reasonable choice for the latter is
1/M.

Obviously at a balanced error solution

%511 — gk

Let ¢;; denote the ration de;/dx,, (as defined in Section 2}. Define the
{(n — 1} X {n — 1) matrix H as follows:

e =1 — ¢ (Cpom — €mg1.m) m=12..n—1 {103)
M1 = —CCm m=2..,n—1 {10b}
Fyp mit = CCrit man m=12..,n—1 (10c)
B =0 otherwise. {10d}

The various elements of H are evaluated at a soiution. It is well known
that a functional iteration scheme will converge at a neighborhood of 2
solution if the matrix of the first differences has eigenvalues lving within the
unit circle. It is easy to verify that A is that matrix in this case and, therefore,
we must investigate its eigenvalues. Note that because x,, is fixed the #-seg-
ment problem actually has only # — 1 degrees of freedom.

THEOREM 2. For sufficiently small ¢, the matrix H defined by Eq. (10) has
all its eigenvalues within the unit circle provided that all ihe error differences
are nonzero. If some of them are zero, then H may have some eigenvalues equal
tol.

Proof. Let P,()) denote the characteristic polynomial of H. Then ii can
be readily verified that

Pn()\) = [’\ -1 C(en,n—l - 3n~l.rz——1)} Pn—l(/\}
+ czen—l,'n—lenfl.n—ZPn~2(A)- {il:”
By grouping together terms multiplied by ¢ as O{¢), Eq. (11 can be written as

P,(A) =X~ 1P, () + Och {1

N2
o

For sufficiently small ¢ the roots of P,(A) will be arbitrarily close to those of
P._,(A) because the roots of a polynomial are coniinuous functions of iis
coefficients. Thus, if all the roots of P,_,(}) are inside the unit circle, the same
will be true for the roots of P,(}), except possibly for the value A = 1. This
suggests a proof by induction plus a separate proof that P,(1) is nonzero.
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Equation (4) plus the assumption of nonzero error differences imply that
for some M

MZ=en, >0 m=1,2,..,n—1 (13a)
M= —epmy>0 m=2,.,n—1. (13b)

For n = 2, we have
Pyd) = A — 1 + c(ey; — eq), (14)

which for ¢ < 1/M has a root less than 1 in absolute value. Then because of
Eq. (12) this will be true for all », except possibly for roots A = 1. We now
examine this case. Equation (11) yields

Py(1) + cep 1 Ppa(l) = ceyg nalPrna(l) + cen1noPus(D]  (15)
Equation (13) implies that the sign of the left-hand side of Eq. (15) will be
the same for all values for ». It can be easily shown that
Py(1) = c*egalen, — €1 + essennl.
Therefore
Py(1) + cessPo(1) = c*[2eg0(€51 — €11) + €s9€41]-

It can be seen from Eq. (13) that the right-hand side of the above equation
is always positive, Hence

Py(1) + cenn1Pn4(1) >0 (16)
or
Pn(l) > _cen,n—IPn—l(l)- (17)

Equations (13) and (14) imply that indeed
P, (1) > 0 for all n.

This completes the proof of the theorem.

COROLLARY. The iterative procedure of Eq. (9) converges locally to a
balanced error solution if such a solution exists, provided that ¢ is sufficiently
small.

Note that the only case when eigenvalues equal one is that when error
differences are zero, i.c., the change in the boundaries does not change the
error. If this is the case in the neighborhood of a balanced error solution, it
can only mean that the error norms in those intervals are already balanced.
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Although we have proven only local convergence, practical computational
experience has shown that the method converges globally (see next section).
However, a formal proof for this case is still missing. We may add here that
the usual proof for convergence of functional iteration schemes [14] is not
applicable here because H may have elements greater than 1/(n — 1).

Equation (11) can be used to show that the coefficient of A" is one while
that of A" 'is

—n—1)+c Z le1 1,01 — €ri4). (12}

The negative of the above quantity is the sum of the roots and this will be less
than (» — 1) in absolute value if

c<I/M.

This suggests a choice for ¢. Note that after each iteration, one can calculate
estimates of M easily by comparing the new with the previous error norms.

5. TiMe oF COMPUTATION AND ROBUSTNESS

It is known that the convergence of functional methods like that discussed
in the previous section is of first order [14] and therefore rather slow, in the
sense that it requires many steps of the algorithm. However, the following
observation is pertinent:

Let N be the total number of sample points of the function to be approxima-
ted, g the order of the approximating polynomial on each segment, and s the
number of steps till convergence. Usually linear programming is used for
curve fitting on each segment [10, 16] and thus let p be the average number
of pivots per iteration. Then the total time of computation will be propor-
tional to the quantity

T = sp[N + n{q + 2)°]. (13}

If no information is available about the location of the error maxima, p is
vsually of the order of ¢ + 2. Thus, if the changes in the endpoints are large,
the mth interval after the kth iteration may have very little overlap with the
mth interval before the kth iteration and the locations of the maxima wiil
differ substantially. On the other hand, if the changes in the endpoints are
small (because of a small value of ¢) the two intervals will overlap and if the
information on the location of the maxima is used to obtain a starting solution
for the curve fitting, then the number of pivots will be very small. Tests with
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piecewise linear approximations of various types of experimental data have
shown that p is usually equal to one in such cases, where it averages around
four for “cold starts.” Thus, a first-order functional iteration method could
be competitive with another method even if it required four times as many
steps. Unfortunately, in most tests Lawson’s method failed to converge and
thus we have no statistics for the value of s [13, 15].

In many practical applications the data are given as discrete sample points
and in general no balanced error solutions exist. It is then possible to use
some direct discrete optimization techniques but they are quite slow, if one
starts far from a solution [13]. Thus, a method searching for a balanced error
solution can be used as a starter to bring the location of the joints to the
neighborhood of the solution. The scheme of Eq. (9) will indeed drive the
system there because it will attempt to make the pairwise error differences as
small as possible. Lawson’s algorithm will fail if one or more intervals at the
neighborhood of a solution have zero error norms.

6. NUMERICAL RESULTS

A number of tests were made using the method of Eq. (9) (Scheme 1) or a
variant of it (Scheme 2). The latter was defined as following. Let

[,Lmk e Z ez_k m=12,.,n. (14)

Then adjust the endpoints according to the following equation:
X = x F 4+ me(p,* — p,k) (15)

A stability analysis of this scheme gives the same results as for the first.

A trivial example involved an f(x) which was piecewise linear to start
with. Lawson’s algorithm is not applicable but a test with scheme 2 con-
verged in six iterations [15].

For smooth functions, like sin (x) and polynomials in x, Lawson’s method
requires fewer iterations than any of the above functional iteration schemes
but the rate of convergence of functional iteration schemes (1 and 2) is still
comparable. As we mentioned in the previous section, functional iteration is
usually superior to Lawson’s algorithm on irregular data. Digitized geo-
graphical map data belong to this category. In one case a terrain profile was
approximated by five linear segments. For the same balance criterion (15 %
deviation of errors about w,*) the results were: Scheme 1-17 iterations;
Scheme 2-10 iterations; Lawson’s algorithm-13 iterations. For a greater
number of segments (20) Lawson’s algorithm always failed because in such
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cases there were always intervals with zero error. The same experience was

found in tests with electrocardiograms and scanning electron microscope
data [13].
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